DBB-8194 Seat No. ## B. Arch. (Sem. - VI) Examination May / June - 2015 Structure - VI Time: 3 Hours] [Total Marks: 120 **Instructions**: (1) Do not write anything other than your roll number on question paper. - (2) Use of IS:456-2000 and SP-16 is allowed during this paper for the design purpose. - (3) Assume suitable data wherever essential and mention it clearly. - (4) Writing appropriate units, nomenclature, and drawing neat sketches/schematics wherever required is an integral part of the answer. **20** - (1) What is the yield strength of mild steel? - (a) 250 MPa - (b) 375 MPa - (c) 415 MPa - (d) 500 MPa - (2) As per IS:456 modulus of elasticity for M25 concrete should be - (a) 10000 MPa - (b) 25000 MPa - (c) 30000 MPa - (d) 27500 MPa - (3) What is the minimum grade of concrete for reinforced concrete construction? - (a) M 10 - (b) M 15 - (c) M 20 - (d) M 25 | (4) | | culation of imposed le
an Standard Code? | oads | is done as per which | | | |--|--|--|-------|----------------------|--|--| | | (a) | IS:800 | (b) | IS:875 (part-2) | | | | | (c) | IS:456 | (d) | IS:875 (part-3) | | | | (5) | For | a cantilever beam wit | h spa | n 7 m what should be | | | | | the minimum depth as per 1S:456 | | | | | | | | (a) | 500 mm | (b) | 700 mm | | | | | (c) | 800 mm | (d) | 1000 mm | | | | (6) | What should be the nominal cover for moderate exposure of concrete? | | | | | | | | (a) | 20 mm | (b) | 25 mm | | | | | (c) | 30 mm | (d) | 35 mm | | | | (7) | The maximum compressive strain in concrete in axial compression is taken as, | | | | | | | | (a) | 0.002 | (b) | 0.0002 | | | | | (c) | 0.001 | (d) | 0.0001 | | | | (8) | then | a beam size 300 mm × 500 mm, what should be minimum area of reinforcement to be provided if grade of steel is Fe415? | | | | | | | (a) | 150 mm^2 | (b) | $200~\mathrm{mm}^2$ | | | | | (c) | 225 mm^2 | (d) | $250~\mathrm{mm}^2$ | | | | (9) | Minimum number of bars to be provided in a circular column should be | | | | | | | | (a) | 4 | (b) | 5 | | | | | (c) | 6 | (d) | 8 | | | | (10) | For slabs the horizontal distance between parallel | | | | | | | main reinforcement bars shall not be more that | | | | not be more than | | | | | (a) | 150 mm | (b) | 200 mm | | | | | (c) | 250 mm | (d) | 300 mm | | | | | | | | | | | | 2 | (A) | What are the assumptions made for the limit state of design? | | | |---|-----|---|----|--| | | (B) | Define any two. | 8 | | | | | (a) Characteristic strength | | | | | | (b) Effective depth | | | | | | (c) Design load | | | | | (C) | Enlist factor influencing the durability of concrete. | 6 | | | 3 | (A) | Design a singly reinforced beam with design moment 150 kN.m and Shear Force 100 kN. The size of beam is 230 mm \times 450 mm. effective cover is 35 mm, use M20 concrete and Fe415 steel. Draw neat sketch. | 15 | | | | (B) | Differentiate between singly and doubly reinforced beam design. | 5 | | | 4 | (A) | Enlist the various reinforcement requirements for beam, column and slab as per IS:456. | 8 | | | | (B) | Design a slab of size $3m \times 6m$ with thickness 135 mm and having a live load of 2.5 kN/m^2 the load of floor finish is 1 kN/m^2 . using M25 and Fe415. Clear cover to main reinforcement is 15 mm. | 12 | | | 5 | (A) | Design a circular column of 400 mm diameter with helical reinforcement subjected to an axial load of 1500 kN under service load and live load. The column has an unsupported length of 3 m effectively held in position at both ends but not restrained against rotation. Use M25 concrete and Fe415 steel. | 20 | | - 5 (B) Calculate working axial load of a column of size 20 230 mm × 450 mm reinforced with 6-12 mm dia. bars. Use M25 concrete and Fe415 steel. Clear cover to main reinforcement is 40 mm. - **6** (A) Enlist and explain with neat sketch various types of shallow foundation. **6** - (B) Design a plain concrete footing for a column of $400 \text{ mm} \times 400 \text{ mm}$ carrying an axial load of 600 kN under service loads. Assume safe bearing capacity of soil as 350 kN/m^2 at a depth of 2 m below the ground level. Use M20 concrete and Fe415 steel for the design.